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1 Introduction

Markov point processes as introduced in the statistical literature by Ripley and Kelly [23]
provide a useful class of models for a range of applications in image analysis, spatial statistics
and mathematical physics (see eg. [15]). They can be defined by local interaction functions
that are easy to interpret and can be exploited in statistical inference. Most attention has
been paid to pairwise interaction processes, with the interaction between two points defined
in terms of the distance between them.

In the last few years though, models of a more set-geometric nature have been proposed.
Baddeley and Mgller |3, 21] suggested a realisation-dependent interaction, where two points
interact if they can be joined by a chain of close points. Equivalently, if we place a ball
around each point, points on the same connected component interact. Furthermore, it was
realised that many cluster processes [7] are Markovian in this sense [5].

Baddeley and Van Lieshout [1, 15, 12, 13] proposed to use Markov object processes where
two objects interact if they - or their influence zones - intersect as a prior distribution in
image interpretation. For further developments see Stryhn et al. [28] and Mardia et al. [16].

Widom and Rowlinson’s penetrable sphere model for liquid-vapour equilibrium [29], de-
fined in terms of the volume occupied by the union of molecular influence zones, has recently
received renewed attention. Baddeley and Van Lieshout [2] studied the model from a sta-
tistical point of view and generalised to allow for repulsion as well as attraction between
molecules; Van Lieshout and Molchanov [14] took into account the coverage function of the
molecular influence zones, while in [4] the replacement of the volume by other geometrical
functionals such as the Euler-Poincaré characteristic is studied. The phase transition be-
haviour of the penetrable sphere model proved by Ruelle [24] was investigated in Chayes et
al. [6] and Georgii and Higgstrém [8] using percolation arguments. See also [9].

Models of the types described above, force one to think of the random set formed by a
union, eg. of objects, influence zones or individual clusters. Yet, explicit random set models
defined in likelihood terms seem to be scarce [19]. In his 1975 book, Matheron [17] considered
the Boolean model. This is a germ-grain model associating to each of the points in a Poisson
process (the germs) a random set called the grain. In particular, a Poisson cluster process
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[7] can be seen as a Boolean model. In this paper, we build random set models by specifyi.ng
a Radon-Nikodym density with respect to an underlying Boolean model similar to the point
process models described above. We ask when the models are well-defined and study their
Markov properties.

The paper is organised as follows. In Section 2 we review the theory of Markov marked
point processes. Basic results about Boolean models are collected in Section 3 and in Section 4
we investigate when a Boolean models has a likelihood with respect to another Boolean model
on the same space. The results are applied to the special cases of marked point processes,
Poisson cluster processes and Boolean models with deterministic grains. Finally, Section 5
discusses local and global Markov properties.

2 Markov marked point processes

Here we give an overview of the theory of Markov marked point processes, following definitions
and results in Ripley and Kelly [23] and Baddeley and Mgller [3].

Heuristically, a marked point process assigns to each point of a ‘location’ process a ‘mark’
giving additional information. For instance in forestry, the location points may denote tree
positions and the mark could be the stem diameter [22]. Graphically we can depict such a
process by drawing a circle of stem radius around each tree position, see Figure 1.

Formally, we will define a marked point process as a point process on the product space of
locations and marks with the additional property that the marginal location process is itself
a well-defined point process (see [7, page 204]).

Definition 1 Let (§,B,}) be a measure space such that A\(S) < oo and the o-algebra B
contains all singletons. Let (K, K,v) be a measure space such that v(K) = 1 and the o-algebra
K contains all singletons. Then a marked point process on S with marks in K is a (finite)
point process on the ezponential space Qsxx of configurations {Gs1,t1) -y (Snytn)},m > 0.

We are interested in defining a marked point process by its density. A suitable reference
process is a Poisson process on S x K, that is a Poisson process on § with intensity A(-),
labelled by iid marks with probability distribution v(-). The absence of interaction between

the marked points makes it an appropriate benchmark process and we can define new models
by specifying their interaction functions.

Definition 2 A density p(-) is a measurable, integrable mapping
p: (QSXKs]:SXK) - (R+7 BOT)
Here Fsyk is the smallest o-algebra making

Npxr = number of points in B with marks in L

a random variable for all B € B,L € K.
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Figure 1: Poisson process of discs with intensity 50 and uniform radius in (0, .1)



Due to the high dimension of Qgsxx, it is desirable to impose further restrictions. A
common choice is a Markov density, which has only ‘local’ interactions: given a symmetric
neighbourhood relation ~ on § x K that may or may not depend on the mark, the like-
lihood ratio (conditional intensity) for adding a new point (s,k) to a configuration y =
{(s1,k1),.--,(Sn, kn)} depends only on the neighbours of the added point.

Definition 3 A4 density p(-) is Markov if
(M) for all'y such that p(y) > 0, ?;(,V_p%_s),_k_}l depends only on (si, k;) €y : (s, k) ~ (si,k:);
(H) if p(y) > 0 then also p(z) > 0 for all configurationsz Cy.

By the Hammersley-Clifford theorem [3, 23] a density p(-) is Markov if and only if it can
be factorised into a product of clique interaction functions

py)= J] ¢(=)

2CYy cliques

where ¢(-) > 0 is measurable and a clique is a configuration y such that for all (s, k), (s, k') €
Yy : (s,k) ~ (&', k). This characterisation can be used to define new models by defining the
interaction functions. However, for each choice we must check that the model is well-defined,
i.e. measurable and integrable.

As an example, consider the random disc process of [3]. Here S is a bounded Borel set
in R% X is Lebesgue measure and B the Borel o-algebra on S. Let K = R* and v any
probability measure on R¥; the mark k € K is interpreted as the disc radius.

Taking interaction function @ = 1 on cliques with three or more members, a pairwise
interaction density could take the form

P{(s15k1), - -5 (80, kn)}) = aB™ [ g(llss — 551, ks, &) (1)

i<j
for some measurable, integrable g : [0, 00)® — [0, c0). Taking

v Hd<ki+k

1 else

g(da kla k?) = {

for 0 < v < 1 yields an analogue of the Strauss model [10, 27]. It is easily seen that this
model is Markov with respect to the neighbourhood relation

(81,k1) ~ (82, k2) © |[s1 = s2|| < k1 + k2 & B(s1,k1) 0 B(sq,k2) # 0.

Here B(s, k) denotes the closed ball of radius & centred at s. For v = 0, no balls are allowed
to overlap, 0 < 7 < 1 yields repulsion and for ¥ = 1, (1) is a Poisson process. Another
example, allowing interactions of order higher than two, is the area-interaction process [2, 14]

P({(s1,k1), -, (8n, kn)}) = @By ~A(UiBlsik)NS) (2)



a generalisation of the penetrable sphere model introduced by Widom and Rowlinson [29].
The model is well-defined for all 3,7 > 0.

/\Rseturning to Definition 2, a density can be interpreted in an infinitesimal sense as follows:
e S p({(s1, k1), -+, (Sn, kn)})A(ds1)v(dky) ... A(dsn)v(dk,) is the probability of having ex-
actly n points, one at each of (s; + \(ds;), k; + v(dk;)), i = 1,...,7n [7, page 122]. Thus, for
any F' € Fsxi, P(X € F) equals

oo e—)\

()
n! / B ./(SxK)n p({(s1,t1),- - -5 (8n, 1) J1P({(81, 21)5 -~ -5 (Sns tn)}

n=0

dA(s1)du(ty) - - - dX(8n)du(t). (3)

Generalisations where the neighbourhood relation depends on the configuration were pro-
posed in [3]. We are particularly interested in their connected component relation: two
points (s;, ki), (s;,k;) € y = {(s1,k1),---,(Sn,kn)} are neighbours if there exists a path
(siy. k1) - - -5 (St ki) € ¥ such that

(Siski) ~ (S13, k1) ~ =+ -~ (St ki) ~ (855 k5)

for some fixed relation ~. We write (s, ki) ~y (s;,k;). For instance in the random disc
example above, (s;,k;) ~y (sj,k;) iff s;,s; belong to the same connected component of
U?:lB(Si’ ki)'
An analogue of the Strauss process could be Mgller’s continuum random cluster model
(21]
p(y) = ey~ (4)

where v > 0 and ¢(y) is the number of connected components. Note that, in contrast to
(1), models (2) and (4) allow for both attraction (v > 1) and repulsion (7 < 1) between the
points.

3 Boolean models

The analogue of the Poisson point process for random sets is the Boolean model introduced
by Matheron [17]. It can be defined by a Poisson point process marked by a random set, then
taking the union of all marks. It is important to note that only the union set is observable,
not the mark sets that constitute the union (Figure 2). Models of this kind are useful to
produce sets of a complicated shape from simple building blocks. However, due to the lack
of identifiability of the components, statistical inference is difficult [20, 18].

Here, we will concentrate on the Euclidean case, takingfor § C R< a compact Borel set and
a homogenous Poisson process with intensity A > 0 for the locations. The mark distribution
is a probability measure v(-) on (K,K) as before. We will denote the distribution of the
Boolean model thus specified by Q5. Throughout we will assume that the union set can be
observed fully, avoiding edge effects.

Definition 4 A density p(-) is a measurable, integrable mapping

p:(Fs, As) — (R+,Bor)
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Figure 2: Poisson disc process of intensity 50 interpreted as point process (left) and Boolean
model (right)




where Fs is the collection of closed sets in S, Ag is the hitting o-algebra [17, Chapter 1],
[26, page 194].

th_en specifying densities with respect to the Boolean law Q Ay Without loss of generality
p(-) assigns mass zero to any set that cannot be obtained as a finite union U, (s: ® K;).
Here we write s; @ K; for the translation of set K; € K over vector s; € S, or in other words
the set described by location s; and mark K;.

Analogously to (3), for any B € Ag, the probability that the random set X with density
p(-) falls in B equals

oo -

JESYET
Y5 [ /(SxK)nA P(ULy (5: @ E0))1p(Uly (5 @ Ki))dsydu(Ky) - dsndu(K.,), (5)

writing | S| for the Lebesgue measure of S.

In particular, for p = 1 and B = {X N L # 0} for some compact set L, we obtain the
capacity functional T'(L) of the Boolean model parametrised by A and v:

o _—1lS| n
1 - T(L) 20 € / .. /(m—)n T 1{s: © Ki) 0 L = 0}dsrdv(Ky) - - -dsndv(K)

n!
=1

o o—AlSI| n
o A,/,/(SXK) 1{81 &) I&l) NL = 0}d$1dl/(K1)

n=0

Now (18 K1)NL =05 € L@ K., the dilation of L by K (17, 25]. Hence
,\//S Kl{(slaaﬁ'l)nL=0}dsldu(K1)=,\/K(|51-1L@K1|)du(1(1)= A|S|—E*| L@ E1]]
X

and thus
T(L) = 1 — exp[-\E’|L & K;|]. (6)

By the Choquet-Matheron theorem [17], a random closed set distribution is determined
completely by its capacity functional. The latter can be expressed in the density p(-), A and
v(-) by equation (5).

Turning attention to the form a density might take, the simple pairwise interaction density
(1) is no longer valid, since distances between marked points are no longer observable, nor is
the number of points. The latter observation rules out terms 8", but the role of the parameter
B is effectively taken over by the intensity parameter A in @, . In general, coverage models
[14] of the form

§(X) = aexpl-log | flex(a))da]

do not generalise to random sets, since the coverage function cx(-) is not known. However,
special cases such as the area-interaction model (2) may yield a valid density

p(X)=ayH (7)



for some finite measure 7, 0 < ¥ < oo. Similarly the continuum random cluster model (4)
suggests a random set density
PX) = oy~ ), (8)

Both (7) and (8) can be used to encourage many disjoint components (y < 1), few
components (7 > 1), or indeed a Boolean model (7 = 1). For exact realisations see [9].

Sometimes the measure () in (7) can be replaced by other Minkowski functionals [17].
For details see [4].

4 Boolean likelihoods

It is well known that the density of a Poisson process on a bounded subset S C R? with
intensity 8 > 0 with respect to a unit rate Poisson process is

p(x) = e(l—ﬁ)lslﬂn(X), (9)

n(x) the number of points in configuration x. Hence all homogeneous Poisson processes are
absolutely continuous with respect to each other.

For Boolean models, the situation is more complicated due to the occlusion of individual
mark sets. A further complication is caused by the mark distribution v(-).

Theorem 1 If 7 << v are probability measures on (K,K) and MA> 0 then Q := Q/—\’,; <<

Q/\,u = Q
Proof : Suppose Q(B) = 0, that is

[o0] —_

YT i
0= ; — / . -~/(S><K)" A"1p(Ul (s @ K;))ds1dv(Ky) . . .dspdv(K,).

Hence all terms must be zero, that is for all n € Nj :
,\n// 15(ULy (s © K;))ds1dv(Ky) . . .dsydv(K,) = 0. (10)
(SxK)"
Since A, A # 0 by general assumption and 7 << v :

3n / / 15(Uky (i © K:))ds1dD(Ky) ... .dspdi(K,) =
(SxK)n

5\ n
G [ [ g 18100 K TT S psrdb () ...dsnd ()

=1
where f denotes the density of 7 with respect to v.

Now by (10), 15(U™; (si®K;)) = 0( leb®v)™ - a.e., hence (U, (i@ K)) T, fKG) =
0 almost everywhere and we obtain, for all n € Ng

im / o ./(‘SxK)" 15(Uly (8i © K:))ds1do(Ky) .. .dsndi(K,) = 0



yielding Q(B) = 0. Since B was arbitrary, Q << Q. a

By the Radon-Nikodym theorem, Q has a derivative with respect to Q. By (5), we obtain

= —AlSl ; -
@(X) - =0 _ A S f(sxx)n 1{U~ (s ® K;) = X }ds1d0(K1) -+ -dsndi(Ky,)
o e—A .
e 20 ' FLAn [+ fiswryn HUL (5 © Ki) = X }ds1du(K) - - - dsndv(K,)

(11)

Below we investigate some special cases.

4.1 Point processes

A Poisson point process can be seen as a Boolean model with a degenerate mark, i.e. v({0}) =
1. Thus by (11), the density of Q5 , with respect to @, , is

Qs x) - Lizo S SR e fon Lx ({81, -y S} )dss - dsn
dQ . oo oA e—AlSl 2N [ [ lx({81, .S })dsy - - -ds
e—MSIAn(X) ;
= _——l — (’\*)‘)[S[ _\n
e BDw(x) ~ © (A) (X)

agreeing with (9).

4.2 Wire frame processes

Consider a Boolean disc process as in Figure 1. Since an homogeneous Poisson process almost

surely does not have multiple points, there is a one-to-one correspondence between the union
sets

U?=15(8i7ki)3 S(si’ kt) = aB(siaki)

the topological boundary of the ball at s; with radius k;, and configurations {(s;, ki) : ¢ =
1,...,n}. In particular, the number of circles is an observable functional for both the random
set and the marked point process representation.

Suppose we have two radius distributions v(-) and 7(-) on (R*,Bor) with 7 << » and
intensities A, A > 0. Then

in,u e(A=NISI 2yn(X)
0= (5 ) Ef(t) (12)

where f(-) is the Radon-Nikodym derivative %2
To verify (12), note that for any F' € Fsxx

i

Q1.5(F) s b / / 1R(X)dsdi(ky) - dspdi(ke)

_ Z =Rt A At e 1B /S o 150 I f(k)dsido(hs) .. dsndv(he)

n=0 i=1
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or alternatively, use (11) as in 4.1.
The expression (12) also holds for other ‘wire frame’ processes with transparent marks,
where the individual component sets can be uniquely identified from their union.

4.3 Poisson cluster processes

In a Poisson cluster process [7], each of the points in a ‘parent’ Poisson process is marked by
a finite, bounded point process of ‘daughters’; a realisation consists of the total offspring.

Thus, as before, let § C R? be bounded Borel, equipped with Lebesgue measure, and take
for K the exponential space Qr for some large enough bounded Borel set T 2 S. The mark
distribution v(-) could be specified by its density g(-) with respect to a unit rate Poisson
process on T. Then, conditional on parent configuration s = {s1,...,8,}, the offspring
X = U~ (s:® K;) is absolutely continuous with respect to a unit rate Poisson process on T,
with conditional density

p(Xls) = eT S T [9(Xpmagsy — s0)e 7]

@ =1
where the sum is over all ordered partitions ¢ of X.
The unconditional density can be found by taking the expectation over s :

pX)= 5 w0 [ [ 5] (X = s (13)

n=0 @ i=1

Next consider two Poisson cluster processes, such that the daughter distributions satisfy
7 << v,ie. if g =0 on anon-null set, then the same is true for §. Then, by (11) or (13),

Qss ) S S WeTOIT [ fon Ty §(Xmiy = i)dsr - don
@ e o _Alsl e nelTl(1-n) Z f-- fS" I, 9(X =1 — 8;)dsy...ds '
The expression (14) can be simplified if we make further model assumptions. For instance,

let each parent have a single daughter, with displacement densities h(-), h(-) concentrated on

a ball of radius R. Then the process is nearest-neighbour Markov at range 2R, and (14)
reduces to

(14)

(O=R1sl )n(X) H (fsﬁ(yi—s)ds).

i=1 fS h(yz - S)ds

4.4 Boolean models with deterministic grains

Consider a homogeneous Poisson process of locations and place at each of the points in 2
realisation a copy of the fixed set Ko. Then for every A\, A > 0, Q 5 << @) and

ko( X)= Pec0 -MSI A e U (s @ Ko) = X}ds;---ds
d@x -AlSl,\ 2o fon 1{UR(5: ® Ko) = X }dsy - --dsy,

Note that the term for » < m in both numerator and denominator vanish, where m is
the number of non-empty connected components in X.

n—O
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5 Markov properties for random sets

In this Section, we focus on finding an analogue to Definition 3 for random sets. We will
exploit the Hammersley-Clifford theorem, giving an equivalence between Markov densities
satisfying (M) and (H) in Definition 3 and factorisation of the clique interaction functions.
Intuitively, in the random set case, it seems reasonable to expect a factorisation into disjoint
connected components. Indeed, by a result in [5], Poisson cluster processes (simple Boolean
models!) are connected component Markov. For this family of neighbourhood relations, the
Hammersley-Clifford factorisation is

M) pE) = o ] 2(;)
=1

where =Z;,...,Z,, are the maximal connected components in = and the interaction function
®(-) > 0 is such that if ¥ is connected and Z C Y is connected too, then &(Y) > 0 =
®(Z) >0 [5].

Hence we can define a random set density p(-) to be Markovian if it satisfies (M’).

Theorem 2 The Boolean model (11), the continuum random cluster random set (8) and the
area-interaction random set (7) satisfy the factorisation property (M’).

Proof : For the Boolean model density (11), consider the denominator

oo eS|

[ [ gy TR0 @ K = Sdndy(K0) - dsndr(K). (19)
SxK)»

Write = Z; U ---Z,, where Z,7 = 1,...,m are the maximal connected components of =.
Then (15) can be rewritten as

eS| m1t ot ) bt
D S ]

nm=1 » Tbm

H/ 1{UZ2, (s ® K;) = Z5}ds1dv(Ky) - - dsy dv(Kn)) =

Jj=1

--/\ISIJ]:[1 [

n;=1

n; ’\n" / ./ H{UZ(si © Ki) = Ej}dsrdv(Kq) - - .dsnjdV(Knj)jl .
!

The numerator in (11) factorises similarly, hence (11) satisfies (M’).
Regarding the area-interaction random set,

pE) =y ® = a [+

i=1

giving (M’).
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Finally ”
1
pE) =y Fa]] =
j=1 v
hence the continuum random cluster model also satisfies (M’), completing the proof. |

Although it does not seem clear how to define a conditional intensity for random sets in
general, the likelihood ratio for adding sp41 @ Kny1to = = UL, (s: D K;) d_epemis .only on f;he
component of 5,41 @ Kn41 in the new set and the connected components =; of = intersecting
the added set.

Turning to ‘global’ Markov properties, Matheron showed that any Boolean model X with
convex mark sets satisfies the semi-Markov property that X N E and X N F' are conditionally
independent given X NG = () where E, F are compact sets separated by another compact
set G, i.e. any line segment joining z € E with 2/ € F must hit G [17]. This property
does not hold for (M’)-densities in general. On the other hand, spatial Markov properties as
considered by Kendall [11] and Mgller [21] may carry over, provided appropriate hereditariness
assumptions are satisfied [5].
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